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Abstract
The definition of an admitted Lie group of transformations for stochastic
differential equations has been already presented for equations with one-
dimensional Brownian motion. The transformation of the dependent variables
involves time as well, and it has been proven that Brownian motion is
transformed to Brownian motion. In this paper, we will discuss this concept for
stochastic differential equations involving multi-dimensional Brownian motion
and present applications to a variety of stochastic differential equations.
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Mathematics Subject Classification: 65C30, 76M60

1. Introduction

In general, almost all differential equations are very difficult to solve explicitly. Numerical
methods are frequently used with much success for obtaining approximate solutions. However,
exact solutions are interesting because with their help, one can analyse the properties of the
equations studied. One of the methods used for finding exact solutions of differential equations
is group analysis.

A survey of this method can be found in [1, 2]. It involves the study of symmetries of
equations, by which one means a local group of transformations mapping a solution of a given
system of equations to a solution of the same system. Moreover, symmetries allow one to find
new solutions of the system.

In contrast to deterministic differential equations, there have been only a few attempts to
apply symmetry techniques to stochastic differential equations. They fall into two groups and
are outlined in the following.
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Let (�,F,P) be a probability space. It is assumed that the σ -algebra F is a filtration,
that is, F is generated by a family of σ -algebras Ft (t � 0) such that

Fs ⊂ Ft ⊂ F ∀s � t, s, t ∈ I,

where I = [0, T ], T ∈ (0,∞].
Let {X(t) = (

X1(t), . . . , Xn(t)
)}t�0 be a stochastic process. The system of Itô equations

dXi(t, ω) = fi(t, X(t, ω)) dt + gik(t, X(t, ω)) dBk(t, ω) (i = 1, . . . , n, k = 1, . . . , r)

(1)

with initial condition X(0) = X(0) is interpreted in the sense that

Xi(t, ω) = X
(0)
i (ω) +

∫ t

0
fi(s,X(s, ω)) ds +

∫ t

0
gik(s,X(s, ω)) dBk(s, ω), (2)

for almost all ω ∈ � and for each t > 0, where fi(t, X) is a drift vector, gik(t, X) is a diffusion
matrix and Bk(k = 1, . . . , r) are one-dimensional Brownian motions,

∫ t

0 f (s,X(s)) ds is
a Riemann integral and

∫ t

0 g(s,X(s)) dB(s) is an Itô integral; the repeat index k denotes
summation.

For example, in the Black–Scholes model, the price of a risky asset is described by the
stochastic differential equation [3]

dX(t) = µX(t) dt + σX(t) dB(t), t ∈ [0, T ] (3)

with initial condition X(0) = X(0). That is,

X(t) = X(0) +
∫ t

0
µX(s) ds +

∫ t

0
σX(s) dB(s),

for each t ∈ [0, T ], where µ is the mean rate of return, σ is the volatility, B is Brownian
motion and T is the time of maturity. The solution of equation (3) with the initial condition
X(0) = X(0), called geometric Brownian motion, is

X(t, ω) = X(0)(ω) exp
(
σB(s, ω) +

(
µ − 1

2σ 2
)
t
)
.

The first approach [4–7] of applying group analysis to stochastic differential equations
deals with fibre-preserving transformations only,

xi = ϕi(t, x, a), t = H(t, a) (i = 1, . . . , n), (4)

where a is a parameter of a Lie group of transformations. For ease of notation, we use
the symbol x in a Lie group of transformations to denote a transformation of a stochastic
process X.

By using Itô’s formula, transformation (4) maps (1) into the system

dXi = f i(t, X) dt + gik(t, X) dBk.

Recall that according to Itô’s formula [8], the evolution of a scalar function I (t, x) satisfies
the condition

dI = (
I,t + fj I,j + 1

2gjkglkI,j l

)
dt + I,j gjk dBk, (5)

where the comma denotes differentiation, for example, I,t is the partial derivative of I with
respect to t.

The requirement that an infinitesimal transformation maps every solution of (1) to a
solution of the same system gives the definition of an admitted Lie group for stochastic
differential equations. This approach has been applied to stochastic dynamical systems
[4, 5] and to the Fokker–Planck equation [6, 7]. Its weakness is that it can only be applied to
fibre-preserving transformations.
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In the second approach [9–13], the authors have tried to generalize (4). The second
approach deals with symmetry transformations for system (1) involving all the dependent
variables in the transformation

xi = ϕi(t, x, a), t = H(t, x, a) (i = 1, . . . , n). (6)

The transformation of Brownian motions is defined by the formulae

dBk = dBk + 1
2a

(
τ,t + fjτ,j + 1

2gjmglmτ,jl

)
dBk, (k = 1, . . . , r), (7)

where τ(t, x) = ∂H
∂a

(t, x, 0) is the coefficient of the infinitesimal generator of the Lie group.
This approach has been applied to scalar second-order stochastic ordinary differential

equations [9, 10], to the Hamiltonian–Stratonovich dynamical control system [11] and to the
Fokker–Planck equation [11–13]. Unfortunately, there is no strict proof that the transformation
of Brownian motion Bk satisfies the properties of Brownian motion.

In [14], a new definition of an admitted Lie group of transformations for stochastic
differential equations was presented. This new approach gives a correct generalization of
approach (4). It includes all dependent as well as independent variables in the transformation.
In particular, the transformation of Brownian motion is defined by the transformation of the
dependent and independent variables, and there is a strict proof that the transformed Brownian
motion satisfies the properties of Brownian motion. This transformation of Brownian motion
is a logical generalization of the change of variable formula to the Itô integral in the case
where the stochastic process is included in the change. The theory developed in [14] discusses
equations with one-dimensional Brownian motion only.

This manuscript extends the discussion in [14] to systems of stochastic differential
equations and multi-dimensional Brownian motion, and shows how to construct the
determining equations for admitted Lie groups of transformations.

2. Lie group of transformations for a system of stochastic differential equations with
one-dimensional Brownian motion

This section is devoted to reviewing the theory developed for one-dimensional Brownian
motion in [14], as it applies to systems of equations.

2.1. Lie group of transformations for a stochastic process

Assume that the set of transformations

t̄ = H(t, x, a), x̄ = ϕ(t, x, a) (8)

composes a Lie group. Let h(t, x) = ∂H
∂a

(t, x, 0), ξ(t, x) = ∂ϕ

∂a
(t, x, 0) be the coefficients of

the infinitesimal generator

h(t, x)∂t + ξ(t, x)∂x.

According to Lie’s theorem, the functions H(t, x, a) and ϕ(t, x, a) satisfy the Lie equations
∂H

∂a
= h(H, ϕ),

∂ϕ

∂a
= ξ(H, ϕ) (9)

and the initial conditions for a = 0:

H = t, ϕ = x. (10)

Since ∂H
∂t

(t, x, 0) = 1, then ∂H
∂t

(t, x, a) > 0 in a neighbourhood of a = 0, where one can find
a function η(t, x, a) such that

η2(t, x, a) = ∂H

∂t
(t, x, a).
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Using the function η(t, x, a), one can define a transformation of a stochastic process X(t, ω)

by

X̄(t̄ , ω) = ϕ(α(t̄), X(α(t̄), ω), a), (11)

where

β(t) =
∫ t

0
η2(s,X(s, ω), a) ds, t � 0,

and α(t) is the inverse function of β(t). This gives an action of Lie group (8) on the set of
stochastic processes. Replacing t̄ by β(t) in (11), one gets

X̄(β(t), ω) = ϕ(t,X(t, ω), a).

In calculations of an admitted Lie group of transformations1 it is useful to introduce the
function

τ(t, x) = ∂η

∂a
(t, x, 0).

Note that the functions h(t, x) and τ(t, x) are related by the formulae

τ(t, x) = 1

2

∂h

∂t
(t, x), h(t, x) = 2

∫ t

0
τ(s, x) ds.

Similar to partial differential equations, the functions τ(t, x) and ξ(t, x) define a Lie group of
transformations for stochastic processes. In fact, given τ(s, x) and ξ(s, x), one sets

h(t, x) = 2
∫ t

0
τ(s, x) ds.

Solving the Lie equations (9) with initial conditions (10), one finds the functions H(t, x, a)

and ϕ(t, x, a).

2.2. Determining equations

Let us consider the system of Itô equations

Xi(t, ω) = Xi(0, ω) +
∫ t

0
fi(s,X(s, ω)) ds +

∫ t

0
gi(s,X(s, ω)) dB(s), (i = 1, . . . , n)

(12)

where the drift rate f and the volatility g are given adapted stochastic processes and B is
one-dimensional Brownian motion.

Definition (see [14]). A Lie group of transformations (8) is called admitted by the stochastic
differential equation (12), if for any solution X(t, ω) of (12) the functions ξ(t, x) and τ(t, x)

satisfy the system of determining equations

ξi,t (t, X(t, ω)) + fj ξi,j (t, X(t, ω)) +
1

2
gjgkξi,jk(t, X(t, ω))

− 2fi,t (t, X(t, ω))

∫ t

0
τ(s,X(s, ω)) ds

− fi,j ξj (t, X(t, ω)) − 2fiτ (t, X(t, ω)) = 0, (13)

gj ξi,j (t, X(t, ω)) − 2gi,t (t, X(t, ω))

∫ t

0
τ(s,X(s, ω)) ds − giτ (t, X(t, ω))

− gi,j ξj (t, X(t, ω)) = 0 (i = 1, . . . , n).

1 The proper definition of an admitted Lie group of transformation will be given in the following section.
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The determining equations for an admitted Lie group of transformations were constructed
in [14] under the assumption that the Lie group of transformations (9) transforms any solution
of equation (12) into a solution of the same equation.

3. Admitted Lie group of transformations for a system of stochastic differential
equations with multi-dimensional Brownian motion

This section is devoted to constructing determining equations of an admitted Lie group of
transformations for stochastic differential equations with multi-dimensional Brownian motion.

The constructions below are similar to the theory developed in [14] for one-dimensional
Brownian motion. Let η(t, x, a) be a sufficiently many times continuously differentiable
function and {X(t)}t�0 a continuous and Ft -adapted stochastic process. Since η2(t, x, a) is
continuous, η2(t, X(t, ω), a) is also an Ft -adapted process. Define

β(t, ω, a) =
∫ t

0
η2(s,X(s, ω), a) ds, t � 0. (14)

For brevity, we write β(t) instead of β(t, ω, a). The function β(t) is called a random variable
of the time course with time change rate η2(t, X(t, ω), a). Note that β(t) is an Ft -adapted
process. Suppose now that η(t, x, a) �= 0 for all (t, x, a). Then for each ω, the map t �−→ β(t)

is strictly increasing. Next define

α(t, ω, a) = inf
s�0

{s : β(s, ω, a) > t}, (15)

and for brevity, write α(t) instead of α(t, ω, a). For each ω, the map t �−→ α(t) is
nondecreasing and continuous. One easily shows that for almost all ω, and for all t � 0,

β(α(t)) = t = α(β(t)). (16)

In [14], it was proven that the processes

B̄k(t) =
∫ α(t)

0
η(s,X(s, ω), a) dBk(s), t � 0, (k = 1, . . . , r)

are standard Brownian motions. Consider

ψ(t, ω) = X̄(β(t), ω),

where

X̄(t, ω) = ϕ(α(t),X(α(t), ω), a)

is the transformation of the stochastic process X(t, ω) given by (11). For almost all ω, there
is the relation

ψ(t, ω) = ϕ(t,X(t, ω), a).

According to the time change formula for Itô integrals [15], a nonanticipating functional e
with

P
(∫ t

0
e2 ds +

∫ t

0
η2 ds < ∞, t � 0

)
= 1

satisfies the formula∫ α(t)

0
e(s, ω) dB(s) =

∫ t

0
e(α(s), ω)

1

η(α(s),X(α(s), ω), a)
dB̄(s). (17)
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Now let the set of transformations (8) compose a Lie group. Assume that {X(t)}t�0 is a
stochastic process satisfying the equation

Xi(t, ω) = Xi(0, ω) +
∫ t

0
fi(s,X(s, ω)) ds +

∫ t

0
gik(s,X(s, ω)) dBk(s),

(i = 1, . . . , n, k = 1, . . . , r),

(18)

where the drift vector f = (f1, . . . , fn) and the diffusion matrix g = (gik)n×r are adapted
stochastic processes and B = (B1, . . . , Br) is multi-dimensional Brownian motion. Applying
Itô’s formula to the function ψ(t, x) = ϕ(t, x, a), one has

ψ(t, ω) = ψ(0, ω) +
∫ t

0
(ϕ,t + fjϕ,j +

1

2
gjkglkϕ,jl)(s,X(s, ω), a) ds

+
∫ t

0
gjkϕ,j (s,X(s, ω), a) dBk(s). (19)

Because X(t, ω) is a solution of (18) and ϕx(t, x, a) is a continuous function,
g(t,X(t, ω))ϕx(t, X(t, ω), a) is a continuous process and gϕx is a nonanticipating functional.
Applying formula (17) to the last term of equation (19), one obtains

ψi(t, ω) = ψi(0, ω) +
∫ β(t)

0
(ϕi,t + fjϕi,j +

1

2
gjkglkϕi,j l)(α(s),X(α(s), ω), a)αt (s) ds

+
∫ β(t)

0

gjkϕi,j

η
(α(s),X(α(s), ω), a) dB̄k(s), (i = 1, . . . , n). (20)

Since β(t, ω, a) = ∫ t

0 η2(s,X(s, ω), a) ds and β(α(t)) = t for almost all ω, then

η2(α(t),X(α(t), ω), a)αt (t) = 1.

This gives

αt (s) = η−2(α(s),X(α(s), ω), a). (21)

Substitution of αt (s) into (20) leads to the equation

ψi(t, ω) = ψi(0, ω) +
∫ β(t)

0

(ϕi,t + fjϕi,j + 1
2gjkglkϕi,j l

η2

)
(α(s),X(α(s), ω), a) ds

+
∫ β(t)

0

gjkϕi,j

η
(α(s),X(α(s), ω), a) dB̄k(s), (i = 1, . . . , n). (22)

Requiring that transformations (8) map a solution of equation (18) into a solution of the same
equation, one obtains

X̄i(t̄ , ω) = X̄i(0, ω) +
∫ t̄

0
fi(s, X̄(s, ω)) ds +

∫ t̄

0
gik(s, X̄(s, ω)) dB̄k(s).

(i = 1, . . . , n, k = 1, . . . , r)

Substituting t̄ = β(t) into this equation, one gets

X̄i(β(t), ω) = X̄i(0, ω) +
∫ β(t)

0
fi(s, X̄(s, ω)) ds +

∫ β(t)

0
gik(s, X̄(s, ω)) dB̄k(s),

(i = 1, . . . , n, k = 1, . . . , r).

(23)

Equations (22) and (23) will certainly be equal if the integrands of the two Riemann
integrals as well as those of the Itô integrals coincide. Comparing the Riemann and Itô
integrals, respectively, one obtains(
ϕi,t + fjϕi,j + 1

2gjkglkϕi,j l

)
(α(t),X(α(t), ω), a) = fi(t, X̄(t, ω))η2(α(t),X(α(t), ω), a),

(24)
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gjkϕi,j (α(t), X(α(t), ω), a) = gik(t, X̄(t, ω))η(α(t),X(α(t), ω), a),

(i = 1, . . . , n, k = 1, . . . , r).
(25)

Since X̄(t̄ , ω) = ϕ(α(t̄), X(α(t̄), ω), a), equations (24) and (25) become

(
ϕi,t + fjϕi,j + 1

2gjkglkϕi,j l

)
(α(t̄), X(α(t̄), ω), a)

= fi(t̄ , ϕ(α(t̄), X(α(t̄), ω), a))η2(α(t̄), X(α(t̄), ω), a), (26)

gjkϕi,j (α(t̄), X(α(t̄), ω), a) = gik(t̄ , ϕ(α(t̄), X(α(t̄), ω), a))η(α(t̄), X(α(t̄), ω), a),

(i = 1, . . . , n, k = 1, . . . , r).
(27)

Substituting t̄ = β(t) into equations (26) and (27), the two equations can be rewritten as

(
ϕi,t + fjϕi,j + 1

2gjkglkϕi,j l

)
(t, X(t, ω), a) = fi(β(t), ϕ(t, X(t, ω), a))η2(t, X(t, ω), a),

(28)

gjkϕi,j (t, X(t, ω), a) = gik(β(t), ϕ(t, X(t, ω), a))η(t, X(t, ω), a),

(i = 1, . . . , n, k = 1, . . . , r).
(29)

Differentiating equations (28) and (29) with respect to the parameter a, one obtains the
equations(

ϕi,ta + fjϕi,ja +
1

2
gjkglkϕi,j la

)
(t, X(t, ω), a)

=
(

η2

(
fi,t

∂β

∂a
+ fi,jϕj,a

)
+ 2fiηηa

)
(t, X(t, ω), a), (30)

gjkϕi,ja(t, X(t, ω), a) =
(

gikηa + η

(
gik,t

∂β

∂a
+ gik,jϕj,a

))
(t, X(t, ω), a),

(i = 1, . . . , n, k = 1, . . . , r).

(31)

Substituting a = 0 into equations (30) and (31) and using (10), one has

(
∂ϕi

∂a

∣∣∣∣
a=0

)
t

+ fj

(
∂ϕi

∂a

∣∣∣∣
a=0

)
,j

+
1

2
gjkglk

(
∂ϕi

∂a

∣∣∣∣
a=0

)
,j l

= fi,t

∂β

∂a

∣∣∣∣
a=0

+ fi,j

∂ϕj

∂a

∣∣∣∣
a=0

+ 2fi

∂η

∂a

∣∣∣∣
a=0

, (32)

gjk

(
∂ϕi

∂a

∣∣∣∣
a=0

)
,j

= gik,t

∂β

∂a

∣∣∣∣
a=0

+ gik

∂η

∂a

∣∣∣∣
a=0

+ gik,j

∂ϕj

∂a

∣∣∣∣
a=0

,

(i = 1, . . . , n, k = 1, . . . , r).

(33)

Since β(t, ω, a) = ∫ t

0 η2(s,X(s, ω), a) ds for all t � 0, differentiating this with respect to a,
one finds

∂β

∂a

∣∣∣∣
a=0

= 2
∫ t

0

∂η

∂a

∣∣∣∣
a=0

ds.



13958 B Srihirun et al

Substituting ∂β

∂a

∣∣
a=0 into equations (32) and (33), one arrives at the following equations

ξi,t (t, X(t, ω)) + fj ξi,j (t, X(t, ω)) +
1

2
gjkglkξi,j l(t, X(t, ω))

− 2fi,t (t, X(t, ω))

∫ t

0
τ(s,X(s, ω)) ds

− fi,j ξj (t, X(t, ω)) − 2fiτ (t, X(t, ω)) = 0,

gjkξi,j (t, X(t, ω)) − 2gik,t (t, X(t, ω))

∫ t

0
τ(s,X(s, ω)) ds

− gikτ (t, X(t, ω)) − gik,j ξj (t, X(t, ω)) = 0,

(i = 1, . . . , n, k = 1, . . . , r). (34)

Equations (34) are integro-differential equations for the functions τ(t, x) and ξ(t, x). These
equations have to be satisfied for any solution X(t, ω) of stochastic differential equation (18).
Thus, one can define an admitted Lie group by using the determining equations (34).

Definition. A Lie group of transformations (8) is called admitted by the stochastic differential
equation (18), if for any solution X(t, ω) of (18), the functions ξ(t, x) and τ(t, x) satisfy the
determining equations (34).

Assume that one has found the functions τ(t, x) and ξ(t, x) which are solutions of the
determining equations (34). Then the Lie group of transformations (8) is recovered by solving
the Lie equations

∂H

∂a
(t, x, a) = h(H, ϕ),

∂ϕ

∂a
(t, x, a) = ξ(H, ϕ),

with the initial conditions

H(t, x, 0) = t, ϕ(t, x, 0) = x,

where h(t, x) = 2
∫ t

0 τ(s, x) ds, and

η2 = ∂H

∂t
.

4. Stochastic differential equations with one-dimensional Brownian motion

In the following, we present examples of systems of two equations involving a single Brownian
motion. For convenience of notation, we will use the symbols X and Y instead of X1 and X2.

4.1. Graph of Brownian motion

Consider the system of equations [8]

dX(t) = dt, dY (t) = dB(t). (35)

The solution of equations (35) with the initial condition (X(0), Y (0)) = (t0, y0) may be
regarded as the graph of Brownian motion. For equations (35) the corresponding functions of
equations (12) are f1 = 1, f2 = 0, g1 = 0 and g2 = 1. The system of determining equations
for (35) becomes

ξ1,t + ξ1,x + 1
2ξ1,yy − 2τ = 0, ξ2,t + ξ2,x + 1

2ξ2,yy = 0, ξ1,y = 0, ξ2,y − τ = 0.

(36)
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The general solution of determining equations (36) is

ξ1 = 2xF1 + F3, ξ2 = yF1 + F2, τ = F1, (37)

where F1 = F1(t−x), F2 = F2(t−x) and F3 = F3(t−x). A basis of generators corresponding
to (37) is

F2∂y, F3∂x, F1(2x∂x + y∂y) + h∂t ,

where h = 2
∫ t

0 F1(s − x) ds.
Note that if the first equation of (35) is considered as an ordinary differential equation (i.e.,

the function X(t, ω) does not depend on ω), then the functions F1, F2 and F3 are constants.

4.2. Black and Scholes market

Consider the system of equations [8]

dX(t) = ρX(t) dt, dY (t) = µY(t) dt + σY (t) dB(t), (38)

where ρ,µ and σ are nonzero constants. The system of equations (38) with the initial condition
X(0) = 1, Y (0) = y > 0 is called the Black and Scholes market. For equations (38) the
corresponding functions of equations (12) are f1 = ρx, f2 = µy, g1 = 0 and g2 = σy. The
system of determining equations for (38) becomes

ξ1,t + ρxξ1,x + µyξ1,y + 1
2σ 2y2ξ1,yy − 2ρxτ − ρξ1 = 0,

ξ2,t + ρxξ2,x + µyξ2,y + 1
2σ 2y2ξ2,yy − 2µyτ − µξ2 = 0,

yξ1,y = 0, yξ2,y − yτ − ξ2 = 0.

(39)

The general solution of determining equations (39) is

ξ1 = 2x ln xF1 + xF3, ξ2 = (y ln y + γy ln x)F1 + yF2, τ = F1, (40)

where F1 = F1
(
t − ln x

ρ

)
, F2 = F2

(
t − ln x

ρ

)
, F3 = F3

(
t − ln x

ρ

)
and γ = 1

ρ

(
µ − 1

2σ 2
)
. A basis

of generators corresponding to (40) is

yF2∂y, xF3∂x, F1(2x ln x∂x + (y ln y + γy ln x)∂y) + h∂t ,

where h = 2
∫ t

0 F1
(
s − ln x

ρ

)
ds.

4.3. Nonlinear Itô system

Consider the system of equations [8]

dX(t) = dt, dY (t) = Y (t) dt + eX(t) dB(t). (41)

For equations (41), the corresponding functions of equations (12) are f1 = 1, f2 = y, g11 = 0
and g2 = ex . The system of determining equations for equations (41) becomes

ξ1,t + ξ1,x + yξ1,y + 1
2 exξ1,yy − 2τ = 0,

ξ2,t + ξ2,x + yξ2,y + 1
2 exξ2,yy − 2yτ − ξ2 = 0,

ξ1,y = 0, ξ2,y − τ − ξ1 = 0.

(42)

The general solution of determining equations (42) is

ξ1 = F2x + F3, ξ2 = F1 ex + F2
(

1
2 + x

)
y + F3y, τ = 1

2F2, (43)

where F1 = F1(t−x), F2 = F2(t−x) and F3 = F3(t−x). A basis of generators corresponding
to (43) is

F1 ex∂y, F3(∂x + y∂y), F2
(
x∂x +

(
1
2 + x

)
y∂y

)
+ h∂t ,

where h = 2
∫ t

0 F2(s − x) ds.
Note that if the first equation of (41) is considered as an ordinary differential equation (i.e.,

the function X(t, ω) does not depend on ω), then the functions F1, F2 and F3 are constant.
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4.4. Mean-reverting Ornstein–Uhlenbeck process

Consider the system of equations [8]

dX(t) = ρX(t) dt, dY (t) = (m − Y (t)) dt + σ dB(t), (44)

where ρ > 0,m > 0 and σ �= 0 are constants. For equations (44), the functions in
equation (12) are f1 = ρx, f2 = m − y, g1 = 0 and g2 = σ . The system of determining
equations for (44) becomes

ξ1,t + ρxξ1,x + (m − y)ξ1,y + 1
2σ 2ξ1,yy − 2ρxτ − ρξ1 = 0,

ξ2,t + ρxξ2,x + (m − y)ξ2,y + 1
2σ 2ξ2,yy − 2(m − y)τ + ξ2 = 0,

ξ1,y = 0, ξ2,y − τ = 0.

(45)

The general solution of determining equations (45) is

ξ1 = 2

γ
xγ +1F1 + xF3, ξ2 = (xγ y − mxγ )F1 + x

γ

2 F2, τ = xγ F1, (46)

where F1 = F1
(
t − ln x

ρ

)
, F2 = F2

(
t − ln x

ρ

)
and F3 = F3

(
t − ln x

ρ

)
and γ = − 2

ρ
. A basis of

generators corresponding to (46) is

x
γ

2 −1F2∂y, xF3∂x, F1

(
2

γ
xγ +1∂x + (xγ y − mxγ )∂y

)
+ h∂t ,

where h = 2
∫ t

0 xγ F1
(
s − ln x

ρ

)
ds.

Let us construct the Lie group of transformations corresponding to the third generator for
the particular case defined by the assumption F1 = k, where k is constant. In this case the
generator becomes

2

γ
xγ +1∂x + (xγ y − mxγ )∂y + 2xγ t∂t .

For finding the Lie group of transformations corresponding to this generator, one has to solve
the Lie equations

∂H

∂a
= 2ϕ

γ

2 H,
∂ϕ1

∂a
= 2

γ
ϕ

γ +1
1 ,

∂ϕ2

∂a
= ϕ

γ

1 ϕ2 − mϕ
γ

1 ,

with the initial conditions at a = 0:

H = t, ϕ1 = x, ϕ2 = y.

The solution of this Cauchy problem gives the transformations of the independent variable t
and the dependent variables x and y,

t̄ = H = tx−γ (x−γ − 2a)−1, x̄ = ϕ1 = (x−γ − 2a)
− 1

γ ,

ȳ = ϕ2 = (y − m)x− γ

2 (x−γ − 2a)−
1
2 + m.

(47)

Hence η2 = Ht = x−γ (x−γ − 2a)−1.
Let us show that the Lie group of transformation (47) transforms a solution of

equations (44) into a solution of the same equations. Assume that (X(t), Y (t)) is a solution
of equations (44). As was proven, the Brownian motion B(t) is transformed to the Brownian
motion

B̄(t) =
∫ α(t)

0
X− γ

2 (s)(X−γ (s) − 2a)−
1
2 dB(s), t � 0, (48)
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where

β(t) =
∫ t

0
X−γ (s)(X−γ (s) − 2a)−1 ds, α(t) = inf

s�0
{s : β(s) > t}, t � 0.

Applying Itô’s formula to the functions ϕ1(t, x, y, a) = (x−γ − 2a)
− 1

γ and ϕ2(t, x, y, a) =
(y − m)x− γ

2 (x−γ − 2a)−
1
2 + m, one has

ϕ1(t, X(t, ω), Y (t, ω), a) = ϕ1(0, X(0, ω), Y (0, ω), a)

+
∫ t

0
ρX−γ−1(s)(X−γ (s) − 2a)

− 1
γ
−1 ds,

ϕ2(t, X(t, ω), Y (t, ω), a) = ϕ2(0, X(0, ω), Y (0, ω), a) (49)

+
∫ t

0
(m − Y (s))X− γ

2 (s)X−γ (s)(X(s)−γ − 2a)−
3
2 ds

+
∫ t

0
σX− γ

2 (s)(X(s)−γ − 2a)−
1
2 dB(s).

By virtue of (21)
∂α

∂t̄
(t̄) = Xγ (s)(X−γ (s) − 2a).

Changing the variable s = α(s̄) in the Riemann integrals in (49), they become∫ t

0
ρX−γ−1(s)(X−γ (s) − 2a)

− 1
γ
−1 ds =

∫ β(t)

0
ρX−γ (α(s)) − 2a)

− 1
γ ds̄,

∫ t

0
(m − Y (s))X− γ

2 (s)X−γ (s)(X(s)−γ − 2a)−
3
2 ds

=
∫ t

0
(m − Y (α(s)))X− γ

2 (α(s))(X(α(s))−γ − 2a)−
1
2 ds̄

=
∫ t

0
(m − (Y (α(s) − m))X− γ

2 (α(s))(X(α(s))−γ − 2a)−
1
2 − m) ds̄.

Because of the transformation of the Brownian motion (48), the Itô integral in (49) becomes∫ t

0
σX− γ

2 (s)(X(s)−γ − 2a)−
1
2 dB(s) =

∫ β(t)

0
σ dB̄(s̄).

Since (Y (α(t̄), ω) − m)X− γ

2 (α(t̄), ω)(X−γ (α(t̄), ω) − 2a)−
1
2 + m = Ȳ (t̄ , ω) and

(X−γ (α(t̄), ω) − 2a)
− 1

γ = X̄(t̄ , ω), one gets

ϕ1(t, X(t, ω), Y (t, ω), a) = ϕ1(0, X(0, ω), Y (0, ω), a) +
∫ β(t)

0
ρX̄(s, ω) ds,

ϕ2(t, X(t, ω), Y (t, ω), a) = ϕ2(0, X(0, ω), Y (0, ω), a)

+
∫ β(t)

0
(m − Ȳ (s, ω)) ds +

∫ β(t)

0
σ dB̄(s).

Because ϕ1(t, X(t, ω), Y (t, ω), a) = X̄(β(t), ω), and ϕ2(t, X(t, ω), Y (t, ω), a) =
Ȳ (β(t), ω), one has

X̄(β(t), ω) = X̄(0, ω) +
∫ β(t)

0
ρX̄(s, ω) ds,

Ȳ (β(t), ω) = Ȳ (0, ω) +
∫ β(t)

0
(m − Ȳ (s, ω)) ds +

∫ β(t)

0
σ dB̄(s).

This confirms that the Lie group of transformations (47) transforms any solution of system
(44) into a solution of the same system.
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5. Stochastic differential equations with multi-dimensional Brownian motion

5.1. System of location and motion

Let µ, σ1 and σ2 be nonzero constants. Consider the system of equations [16]

dX(t) = Y (t) dt + σ1 dB1(t), dY (t) = −µY(t) dt + σ2 dB2(t). (50)

For equations (50), the corresponding functions of equations (34) are f1 = y, f2 =
−µy, g11 = σ1, g12 = 0, g21 = 0 and g22 = σ2. The system of determining equations
for (50) becomes

ξ1,t + yξ1,x − µyξ1,y + 1
2σ 2

1 ξ1,xx + 1
2σ 2

2 ξ1,yy − 2yτ − ξ2 = 0,

ξ2,t + yξ2,x − µyξ2,y + 1
2σ 2

1 ξ2,xx + 1
2σ 2

2 ξ2,yy + 2µyτ + µξ2 = 0,

ξ1,x − τ = 0, ξ2,y − τ = 0, ξ1,y = 0, ξ2,x = 0.

(51)

The general solution of determining equations (51) is

ξ1 = −C1 e−µt + C2, ξ2 = C1µ e−µt , τ = 0. (52)

Hence h = 0. Thus, a basis of generators corresponding to (52) is

e−µt (∂x − µ∂y), ∂x.

5.2. Vibrating string model

Consider the system of equations [8]

dX(t) = Y (t) dt + µdB1(t), dY (t) = −X(t) dt + σ dB2(t), (53)

where µ and σ are nonzero constants. The system of equations (53) is a model for a
vibrating string subject to a stochastic force. For equations (53), the corresponding functions
of equations (34) are f1 = y, f2 = −x, g11 = µ, g12 = 0, g21 = 0 and g22 = σ . The system
of determining equations for (53) becomes

ξ1,t + yξ1,x − xξ1,y + 1
2µ2ξ1,xx + 1

2σ 2ξ1,yy − 2yτ − ξ2 = 0,

ξ2,t + yξ2,x − xξ2,y + 1
2µ2ξ2,xx + 1

2σ 2ξ2,yy + 2xτ + ξ1 = 0,

ξ1,x − τ = 0, ξ2,y − τ = 0, ξ1,y = 0, ξ2,x = 0.

(54)

The general solution of determining equations (54) is

ξ1 = C1 sin t + C2 cos t, ξ2 = C1 cos t − C2 sin t, τ = 0. (55)

Hence h = 0. Thus, a basis of generators corresponding to (55) is

sin t∂x + cos t∂y, cos t∂x − sin t∂y.

5.3. Nonlinear Itô system

Let µ1 and µ2 be constants. Consider the system of equations [6]

dX(t) = µ1

X(t)
dt + dB1(t), dY (t) = µ2dt + dB2(t). (56)

The associated Fokker–Planck equation is

ut = 1

2
(uxx + uyy) +

µ1

x2
u − µ1

x
ux − µ2uy.
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For equations (56), the corresponding functions of equations (34) are f1 = µ1

x
, f2 = µ2, g11 =

1, g12 = 0, g21 = 0 and g22 = 1. The system of determining equations for (56) becomes

ξ1,t +
µ1

x
ξ1,x + µ2ξ1,y + 1

2ξ1,xx + 1
2ξ1,yy − 2

µ1

x
τ +

µ1

x2
ξ1 = 0,

ξ2,t +
µ1

x
ξ2,x + µ2ξ2,y + 1

2ξ2,xx + 1
2ξ2,yy − 2µ2τ = 0,

ξ1,x − τ = 0, ξ2,y − τ = 0, ξ1,y = 0, ξ2,x = 0.

(57)

The general solution of determining equations (57) is

ξ1 = C1x, ξ2 = C1(y + µ2t) + C2, τ = C1, (58)

and h = 2C1t . Thus, a basis of generators corresponding to (58) is

∂y, x∂x + (y + µ2t)∂y + 2t∂t .

5.4. Ornstein–Uhlenbeck process

Consider the system of equations [6]

dX(t) = −X(t) dt, dY (t) = −Y (t) dt + dB1(t) + dB2(t). (59)

This system represents an Ornstein–Uhlenbeck process and its corresponding Fokker–Planck
equation is

ut + 1
2uyy − xux − yuy − 2u = 0.

For system of equations (59), the corresponding functions of equations (34) are f1 = −x, f2 =
−y, g11 = 0, g12 = 0, g21 = 1 and g22 = 1. The system of determining equations for (59)
becomes

ξ1,t − xξ1,x − yξ1,y + ξ1,yy + 2xτ + ξ1 = 0,

ξ2,t − xξ2,x − yξ2,y + ξ2,yy + 2yτ + ξ2 = 0,

ξ1,y = 0, ξ2,y − τ = 0.

(60)

The general solution of determining equations (60) is

ξ1 = x3F1 + xF3, ξ2 = x2yF1 + xF2, τ = x2F1, (61)

where F1 = F1(x et ), F2 = F2(x et ) and F3 = F3(x et ). A basis of generators corresponding
to (61) is

xF2∂y, xF3∂x, F1x
2(x∂x + y∂y) + x2h∂t ,

where h = 2
∫ t

0 F1(x es) ds.
Let us construct the Lie group of transformations corresponding to the third generator for

the particular case defined by the assumption F1 = k, where k is constant. In this case the
generator becomes

x3∂x + yx2∂y + 2x2t∂t .

For finding the Lie group of transformations corresponding to this generator, one has to solve
the Lie equations

∂H

∂a
= 2ϕ2

1H,
∂ϕ1

∂a
= ϕ3

1 ,
∂ϕ2

∂a
= ϕ2ϕ

2
1 ,

with the initial conditions for a = 0:

H = t, ϕ1 = x, ϕ2 = y.
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The solution of this Cauchy problem gives the transformations of the independent variable t
and the dependent variables x and y,

t̄ = H = t (1 − 2ax2)−1, x̄ = ϕ1 = x(1 − 2ax2)−
1
2 , ȳ = ϕ2 = y(1 − 2ax2)−

1
2 .

(62)

Hence η2 = (1 − 2ax2)−1.
Let us show that the Lie group of transformations (62) transforms a solution of

equations (59) into a solution of the same equations. Assume that (X(t), Y (t)) is a solution
of equations (59). It was proven that the Brownian motions B1(t) and B2(t) are transformed
to the Brownian motions

B̄1(t) =
∫ α(t)

0
(1 − 2aX2(s))−

1
2 dB1(s),

B̄2(t) =
∫ α(t)

0
(1 − 2aX2(s))−

1
2 dB2(s), t � 0,

(63)

where

β(t) =
∫ t

0
(1 − 2aX2(s))−1ds, α(t) = inf

s�0
{s : β(s) > t}, t � 0.

Applying Itô’s formula to the functions ϕ1(t, x, y, a) = x(1 − 2ax2)−
1
2 and ϕ2(t, x, y, a) =

y(1 − 2ax2)−
1
2 , one has

ϕ1(t, X(t, ω), Y (t, ω), a) = ϕ1(0, X(0, ω), Y (0, ω), a) −
∫ t

0
X(s)(1 − 2aX2(s))−

3
2 ds

ϕ2(t, X(t, ω), Y (t, ω), a) = ϕ2(0, X(0, ω), Y (0, ω), a) −
∫ t

0
Y (s, ω)(1 − 2aX2(s))−

3
2 ds

+
∫ t

0
(1 − 2aX2(s))−

1
2 dB1(s) +

∫ t

0
(1 − 2aX2(s))−

1
2 dB2(s). (64)

By virtue of (21)

∂α

∂t̄
(t̄) = (1 − 2aX2(s)).

Changing the variable s = α(s̄) in the Riemann integrals in (64), they become∫ t

0
X(s)(1 − 2aX2(s))−

3
2 ds =

∫ β(t)

0
X(α(s̄))(1 − 2aX2(α(s̄)))−

1
2 ds̄,

∫ t

0
Y (s)(1 − 2aX2(s))−

3
2 ds =

∫ β(t)

0
Y (α(s̄))(1 − 2aX2(α(s̄)))−

1
2 ds̄.

Because of the transformation of the Brownian motions (63), the Itô integrals in (64) become∫ t

0
(1 − 2aX2(s))−

1
2 dB1(s) =

∫ β(t)

0
dB̄1(s̄),

∫ t

0
(1 − 2aX2(s))−

1
2 dB2(s) =

∫ β(t)

0
dB̄2(s̄).

Since X(α(t̄))(1 − 2aX2(α(t̄)))−
1
2 = X̄(t̄ , ω) and Y (α(t̄))(1 − 2aX2(α(t̄)))−

1
2 = Ȳ (t̄ , ω),

one gets

ϕ1(t, X(t, ω), Y (t, ω), a) = ϕ1(0, X(0, ω), Y (0, ω), a) −
∫ β(t)

0
X̄(s, ω) dB̄1(s),
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ϕ2(t, X(t, ω), Y (t, ω), a) = ϕ2(0, X(0, ω), Y (0, ω), a) −
∫ β(t)

0
Ȳ (s, ω) dB̄1(s)

+
∫ β(t)

0
dB̄1(s) +

∫ β(t)

0
dB̄2(s).

Because ϕ1(t, X(t, ω), Y (t, ω), a) = X̄(β(t), ω) and ϕ2(t, X(t, ω), Y (t, ω), a) = Ȳ (β(t),

ω), one has

X̄(β(t), ω) = X̄(0, ω) −
∫ β(t)

0
X̄(s, ω) ds,

Ȳ (β(t), ω) = Ȳ (0, ω) −
∫ β(t)

0
Ȳ (s, ω) ds +

∫ β(t)

0
dB̄1(s) +

∫ β(t)

0
dB̄2(s).

This confirms that the Lie group of transformations (62) transforms any solution of
equations (59) into a solution of the same equations in this particular case.

6. Conclusion

The definition of an admitted Lie group of transformations for stochastic differential equations
was extended to stochastic differential equations with multi-dimensional Brownian motion.
This approach includes dependent and independent variables in the transformation. The
transformation of Brownian motion is defined by the transformation of dependent and
independent variables. Correctness of all developed construction is strictly proven. Thus
a correct approach for generalization of group analysis to stochastic differential equations
has been developed. The developed theory was applied to a variety of stochastic differential
equations. First, stochastic differential equations with one-dimensional Brownian motion
were studied. Then the theory was extended to stochastic differential equations with multi-
dimensional Brownian motion. For stochastic differential equations with one-dimensional
Brownian motion, four applications were studied: a system describing the graph of Brownian
motion, a system describing the Black and Scholes market, a system describing mean-
reverting an Ornstein–Uhlenbeck process and a nonlinear Itô system. For stochastic differential
equations with multi-dimensional Brownian motion, four applications were studied: a system
describing location and motion, a system describing model for a vibrating string subject to
a stochastic force, a system representing Ornstein–Uhlenbeck process and a nonlinear Itô
system.
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[12] Unal G 2003 Symmetries of Itô and Stratonovich dynamical systems and their conserved quantities Nonlinear
Dyn. 32 417–26
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